Technical Appendix S6

Ichthys Gas Field Development Project: benthic habitat mapping of the Darwin region—methods of data collection, collation and map production

Ichthys Gas Field Development Project: Benthic Habitat Mapping of the Darwin Region— Methods of data collection, collation and map production

Rev 0 | 30 March 2011

INPEX Document No. C036-AH-REP-0121

Phone: +61 408 857 056 E-mail: admin@geooceans.com Address: 8/260 West Coast Highway Scarborough, WA Web: www.geooceans.com

Table of Contents

1. Intro	oduction5
2. Data	collection methods6
2.1. T	owed video survey6
2.1.1.	Field sampling
2.1.2	Video transects
2.1.3.	Towed video system
2.1.4	Video data analysis and habitat classification7
2.1.5	Quality assurance and quality control9
2.1.6	9 Bathymetry
2.1.7.	Depth correction for tide10
2.2. Ir	ntertidal survey11
2.3. V	/alker shoal dive survey13
2.3.1.	Data collection method summary13
2.3.2	Data classification method for habitat mapping14
3. Data	collation methods14
3.1. H	abitat classification14
3.2. P	oint data classification17
3.2.1.	Sediment particle size point data classification
3.3. B	enthic communities point data classification
3.4. H	abitat and sediment particle size distribution maps
3.5. S	ediment particle size map24
з.6. Н	abitat distribution map26
3.6.1.	Interpolated subtidal habitat distribution map
3.6.2	Geophysical survey data classification27
3.6.3.	Collating habitat distribution data – high confidence areas
3.6.4	Inferred habitat areas
3.6.5	Benthic habitat map
4. Des	cription of benthic habitats33
5. Limi	tations of the mapping methods
5.1. S	ediment particle size map
5.2. B	enthic habitat map

	5.2.1.	Inferred habitats	35
	5.2.2.	Mixed community class	35
6.	Refere	ences	36
Ар	pendix	1 Habitat Classification Definitions	37
Ар	pendix	2 Substrate class definitions	38

List of Figures

-	Figure 1 Left: Hard coral (<i>Acropora</i> sp.) at Old Man Rock; Right: Hard coral (<i>Turbinaria</i> sp.) at Lee Point
-	Figure 2 Left: Macroalgae (<i>Halimeda</i> sp.) near East Point; Right: Macroalgae (<i>Sargassum</i> sp.) at Lee Point
-	Figure 3 Left: Seagrass (<i>Halodule</i> sp.) in Fannie Bay; Right: Seagrass (<i>Halophila</i> sp.) in Fannie Bay
-	Figure 4 Left: Filter feeding soft coral (Gorgonian fan) at Lee Point; Right: Sponge and sea whips at East Point
-	Figure 5 Left: Medium bio-turbation in mud sediment; Right: Sand sediment9
-	Figure 6. Tidal stations near Darwin Harbour Source: Commonwealth of Australia 2011, Bureau of Meteorology11
-	Figure 8 Helicopter flight path and photo locations from the intertidal aerial survey 12
-	Figure 8 Schematic of the habitat data collation and the benthic habitat map production process
-	Figure 11 The data collation process used to produce the sediment particle size map15
-	Figure 13 Habitat classification scheme hierarchical flow chart
-	Figure 11 The sources of the point data combined into the total known dataset (~38,000 points)19
-	Figure 13 Reclassification classes of the sediment classification triangle (Folk, 1954)
-	Figure 15 Community type point data23
-	Figure 17: Sediment particle size map25
-	Figure 19 Decision process to combine the habitat distribution data
-	Figure 21 Benthic habitat map32

List of Tables

-	Table 1 Dive survey locations	13
-	Table 2 Data fields contained in the habitat point data	17
-	Table 4 The number of rows of data from the different studies that was combined into the known-point data set	18
-	Table 5 Decision rules for the sediment particle size level 2 classes	21
-	Table 7 Point data community types classification decision rules and nomenclatur	e. 22
-	Table 9: The 'inferred habitats' percent cover calculations and classification	29
-	Table 11 Biological communities present in each depth class (using the point data	ı). 30
-	Table 13 Benthic habitat area calculations in the study area (Figure 21)	31

1. Introduction

Geo Oceans (GO) was commissioned to collate and classify available marine habitat data of the seafloor (benthic) substrates and biological communities to produce maps showing the distribution of sediment particle size and the benthic habitats in the waters surrounding the Darwin Harbour region. INPEX has also conducted additional studies of the benthic environment of Darwin Harbour, Gunn Reef and the inshore waters from Fannie Bay to Adam Bay. These studies included qualitative and quantitative subtidal and intertidal surveys of the hard coral, macroalgae, filter-feeder and seagrass communities on the reef and sediment substrates. The data collected during these additional studies was collated with the existing habitat data to improve the resolution and accuracy of the existing benthic habitat maps. The habitat maps provide a tool to quantify the spatial distribution of the biological communities and substrates found in the Darwin region. The data will be used to facilitate environmental management decisions for the proposed INPEX Ichthys Gas Field Development project.

To collate data from different data sources all of the data must be classified to the same classification scheme using consistent decision rules and classification definitions for all data sources. This report outlines the decision rules applied to reclassify the existing data and the processes used to display the spatial distributions of the habitats and describe the data collection methods used during the additional surveys including intertidal surveys and subtidal diving surveys.

2. Data collection methods

2.1. Towed video survey

Towed camera transects were used to collect data to classify the benthic habitats in the study area of the greater Darwin Harbour region. The data collected during this survey was combined with existing habitat data to update the benthic habitat maps. The equipment and data collection methods are described below.

2.1.1. Field sampling

The study area included the near-shore waters from Fanny Bay to Adam Bay and East Arm in Darwin Harbour. The field survey was conducted over 7 days of field operations from 29th November to 5th December 2010 aboard the vessel 'MV Mystified', a 17.5m long vessel with a draft of 1.4m.

The sampling plan was designed to maximise the available field time by choosing an optimal transect length and transect line spacing, considering the surrounding habitat type. In areas of complex habitat or areas of particular interest (e.g. Fannie Bay) the video transect lines were spaced 200m apart. In areas of homogeneous habitat (e.g. Shoal Bay) the transect lines were spaced up to 500m apart. The transect length was at least 30m long but in areas of sparse, patchy habitat the transect length was increased to at least 50m long. Areas of particular interest (e.g. seagrass meadows and reef habitats) were surveyed more intensively to determine habitat boundaries and community composition.

The transects involved towing a video camera along the seafloor at a speed of 1 to 2 kilometres per hour (km/h^{-1}) and approximately 1 metre (m) above the substratum.

2.1.2. Video transects

The field survey recorded 408 video transects (of varying lengths) covering a total distance of approximately 20 km using a standard definition video system. The video frame covers approximately a 0.5m wide band of substrate (at 1m above substratum), resulting in an area approximately 10,000 km² of benthic habitat surveyed. The video data analysis produced approximately 36,000 rows of habitat point data within the survey area.

2.1.3. Towed video system

The camera was mounted to the sled on a 45° angle pointing forward. The video camera was a high resolution (640x480 lines), low light camera (0.1 lux), standard definition video camera with a wide-angle lens. Video footage was encoded with latitude and longitude coordinates using a Furuno GP-37 differential global positioning system (DGPS), which has an accuracy of 5 m (95% of the time). The GPS locations were encoded to the audio and video tracks of the video footage. The video footage was recorded to an Archos 5 internet tablet hard disk drive recorder in MPEG-4 AVI format with VGA resolution (640x480) at 30 fps. Frame grabs from the video footage are displayed in Figures 1, 2, 3, 4 and 5.

The camera system consisted of a small, lightweight, underwater video camera system mounted in a sled/housing that has a hydrodynamic design to minimise the friction and drag forces from the water, thereby reducing the distance that the camera tows behind the vessel. Because the study area was in shallow waters, a distance correction (to

allow for the difference between the video camera and the GPS location) was not required. The estimated distance of the camera in relation to the GPS antennae for the depth classes (listed) was as follows:

- 0 to 5m water depth camera distance = 0m
- 5 to 10m water depth camera distance = 10m
- >10m water depth camera distance = 20m
- 2.1.4. Video data analysis and habitat classification

The video footage was analysed in real time in the field, by a marine scientist trained and experienced in video analysis and habitat classification. A custom designed Visual Basic software program was used which allows the user to assign biota and substrate attributes to GPS position in a spreadsheet while the video is recorded. The habitats were classified according to the INPEX habitat classification scheme (Appendix 1 and Appendix 2).

Qualitative estimates of the cover of the different biological community and substrate types were made using density classes listed in Appendix 1 and Appendix 2. Substrate type and particle sizes were based on the Wentworth grade scale of particle sizes: particles greater than 64 mm (cobble) are defined as consolidated (reef); substrate and particles smaller than 64 mm (pebble) are defined as unconsolidated (sand) substrate. For poor quality video footage where the substrate type was difficult to see, the substrate type was classified based on the surrounding substrate or what was likely to occur. The presence of specific biota types in each biota class was recorded, with the level of taxonomic detail being limited by the quality of the video footage, which in turn is dependent on the environmental conditions (e.g. water visibility and sea state) and the speed at which the towed video is collected. For this survey, the video was analysed to seagrass genera and macroalgae, filter-feeders, hard corals and soft corals to morphological life-form level. Some biota could be identified to genus or species level as listed in Appendix 1. However, this data is only indicative and is dependent on image quality and should not be used for presence/absence analysis to this taxonomic level.

Figure 1 Left: Hard coral (*Acropora* sp.) at Old Man Rock; Right: Hard coral (*Turbinaria* sp.) at Lee Point

Figure 2 Left: Macroalgae (Halimeda sp.) near East Point; Right: Macroalgae (Sargassum sp.) at Lee Point

Figure 3 Left: Seagrass (*Halodule* sp.) in Fannie Bay; Right: Seagrass (*Halophila* sp.) in Fannie Bay

 Figure 4 Left: Filter feeding soft coral (Gorgonian fan) at Lee Point; Right: Sponge and sea whips at East Point

Figure 5 Left: Medium bio-turbation in mud sediment; Right: Sand sediment

2.1.5. Quality assurance and quality control

The video analysis data was imported into a Microsoft Access database to perform error checking and quality control queries before undertaking analysis and presentation in a GIS package. The video footage was checked for erroneous or unusual data. If necessary, the video footage was re-analysed using the same methods as used during the field survey, and a GPS decoder was used to export the GPS position of the video footage collection location as the video is played-back.

2.1.6. Bathymetry

Bathymetry (depth) data was captured during the video field survey using a Garmin Intelliducer eco-sounder. The Intelliducer received depth data up to a vessel speed of approximately 12kn. The accuracy of the Intelliducer is within 10cm in a water depth between 0-10m and 1m in water depth of >10m. The depth data collected during this survey is of sufficient accuracy for the purposes of this survey.

Note, however that this bathymetry data is not of sufficient accuracy to be used where high accuracy bathymetry data is required (e.g. engineering design etc) or for vessel / shipping navigation purposes.

2.1.7. Depth correction for tide

Depth was recorded throughout the day during the period 29/11/2010 to 5/12/2010, at tide heights ranging from 0.76 to 6.97 metres above lowest astronomical tide, the datum used in this region (Figure 6) and to which the bathymetry data produced for this project has been referenced. The depths were corrected for tide using a method based closely on the 'Rule of Twelfths', a tool commonly used in yachting to adjust depth for tides (see http://en.wikipedia.org/wiki/Rule_of_twelfths).

This rule assumes that the rate of flow of a tide increases smoothly to a maximum halfway between high and low tide before smoothly decreasing to zero again and that the interval between low and high tides is approximately six hours. The rule states that in the first hour after low tide the water level will rise by one twelfth of the range, in the second hour two twelfths, and so on according to the sequence - 1:2:3:3:2:1. The rule, as generally applied, assumes that the period between high and low tides is six hours. For this project, the period varied between 5.3 and 7.2 hours. To improve accuracy, the rule was modified such that the water level is assumed to rise by one twelfth of the range during the first one sixth of the period between tides (approximately an hour), rather than during the first hour (precisely), and similarly for the remaining five sixths of the period between tides.

There are three tide stations relevant to the study area. The tide times from the standard tide station at Darwin were used to correct depths from Fannie Bay southwards, while the secondary stations at Night Cliff (approximately 7 minutes behind Darwin) and Glyde Point (approximately 34 minutes ahead of Darwin) were used to correct data from Shoal Bay and Adam Bay respectively. This approach was confirmed with HR Wallingford, the primary end user of the data (pers. comm., Stephen Richardson, 4 January 2011).

In addition, a further offset of 0.5 m, consistent across the entire dataset, was added to the depth to account for the depth of the transceiver below the water.

The rule of twelfths and transceiver depth corrections were calculated using a custom VBA Excel Macro.

 Figure 6. Tidal stations near Darwin Harbour Source: Commonwealth of Australia 2011, Bureau of Meteorology

2.2. Intertidal survey

The distribution of benthic habitats in the intertidal area between Lee Point and Fannie Bay and the East Arm of Darwin Harbour was mapped using low tide aerial imagery sourced from the NT Government. The habitat boundaries between reef and sediment substrate identified in the imagery were manually digitised in Arc Map 9.3 at a scale of approximately 1:10,000.

The digitised habitats were classified for biological community type using intertidal habitat point data collected from an aerial survey using a helicopter during spring low tide on 7th November 2010. The aerial survey collected geo-referenced high-resolution still images and high definition video footage along the flight path displayed in Figure 7. The still images were analysed using visual estimates of biological community type and percent cover and classified according to the INPEX habitat classification scheme (Appendix 1) to produce known habitat point data. The point data was used to classify the reef substrates identified from the digitised aerial images, assuming that the data classified from the still images represented the biological communities in that habitat.

Figure 7 Helicopter flight path and photo locations from the intertidal aerial survey

2.3. Walker shoal dive survey

2.3.1. Data collection method summary

On 29 and 30 November 2010, URS Australia Pty Ltd (URS) undertook surveys by diver of selected hard substrate communities at five sites within Darwin Harbour (Table 1). The survey activities were undertaken by suitably qualified and experienced commercially-certified scientific divers from URS, with diving support provided by Tek Diving Services.

DATE	LOCATION	LATITUDE	LONGITUDE
29/11/10	Walker Shoal	12° 29.463' S	130° 52.381' S
29/11/10	Dudley Pt Bommies	12° 25.074' S	130° 48.932' S
30/11/10	Stevens Rock	12° 29.160' S	130° 47.114' S
30/11/10	Plater Rock ('Pinnacles')	12° 28.579' S	130° 47.207' S
30/11/10	Kurumba Shoal	12° 28.319' S	130° 47.189' S

Table 1 Dive survey locations

The aim of the survey was to characterise the benthic filter feeder community on Walker Shoal and to compare it against the communities present on hard substrates, at similar depth, in other parts of the harbour that are outside the areas predicted for impact from dredging or spoil disposal (i.e. Stevens Rock, Plater Rock and Kurumba Shoal). Dudley Point Bommies site was visited to enable a qualitative description to be made of the predominant taxa present within the hard coral community at that location.

Health and safety considerations dictated the use of video transects, rather than line intercept transects, for analysis of the benthic communities. Whilst the relatively shallow depths did not restrict dive times, the periods within which the surveys could be conducted were limited to those times when tidal currents were sufficiently low (strong currents were experienced, even though the survey was conducted during a neap tide period). The greater speed with which video transects are recorded also reduced the exposure time of the divers to other hazards, such as dangerous marine fauna (i.e. crocodiles, sharks, jellyfish, stonefish).

Four 20 m long transects were laid at a depth of 7 m below LAT. The start of each transect was separated from the end of the previous transect by distances of some 2-5 m. A video camera was held vertically a distance of 0.5 m above the substrate, giving a field of view some 0.5 m wide, hence each video record captured the benthic community present on an area of approximately 10 m2. These video records will be analysed to provide quantitative estimates of cover and diversity of the benthic community. At Stevens Rock, Plater Rock and Kurumba Shoal, three 20 m long transects were laid at depths of 7 m below LAT. The same transect spacing and video techniques used at Walker Shoal were applied at these three locations.

At each location a collection was made of the dominant taxa, adhering to the requirements of a collecting permit issued under the NT Fisheries Act. Samples of the biota were removed, transferred into calico bags aboard the dive support vessel and placed on ice. On shore, the samples were catalogued, photographed, labelled, preserved in 70% ethanol and transferred to the Museum and Art Galleries of the Northern Territory, from where they will be distributed for taxonomic identification.

At Walker Shoal, an initial diver inspection was undertaken to ascertain the variation (with depth) of the abundance and diversity of taxa within the filter feeder community. At

the bottom of the shoal (around 11 m below LAT), benthic cover was quite low (<10%); this generally increased with shallowing water depth, up to around 25% cover at 7 m below LAT. The surface of the shoal was rugged (up to 0.5-1.0 m relief) and the distribution of the benthic communities was very patchy, in terms of both benthic cover and diversity of taxa. 7 m below LAT was selected as a suitable depth at which to lay transects for the collection of video records, as the benthic community at this depth appeared to be comprised of the dominant taxa present in the higher-cover areas of the shoal.

2.3.2. Data classification method for habitat mapping

The URS diver and ROV surveys (including the survey discussed in section 2.3.1) used quantitative analysis methods to quantify the percent cover of the biological communities to detect temporal and spatial variability at the survey locations. This data included detailed taxonomic identification (e.g. identified to species or genus level). The field personnel and image analyst also recorded a qualitative description of the biological community composition and percent cover to describe the benthic habitat type at each survey location. The qualitative assessment description was re-classified into the INPEX habitat classification scheme (Appendix 1) and was used to classify the survey point location. This point data was collated into the total known-point data set (Section 3.3) and was used for the habitat map production.

3. Data collation methods

All of the available habitat data in the Darwin region was collated to produce a total known dataset consisting of point and distribution (polygon) data. The data collated into the known dataset was collected using both quantitative and qualitative survey methods across different spatial and temporal scales with varying accuracy. The known dataset consisted of substrate and habitat data that were used to define and classify the habitat composition and distribution. The datasets were classified and collated to produce sediment particle size and benthic habitat maps. The process of data classification and processing to produce the sediment particle size and benthic habitat gain benthic habitat maps are illustrated in the flow diagrams in Figure 8 and Figure 9. The following sections provide a description of the methods used for each step of classification for each of the data sources.

3.1. Habitat classification

To combine the data from the different data sources the INPEX habitat classification scheme was used to reclassify the total point dataset using consistent decision rules and classification definitions. This allows data collected with different levels of detail to be combined to produce substrate and community distribution maps at different scales. The classification scheme is a hierarchical classification scheme that groups low-level classes into broader high-level classes (Figure 10), allowing fine scale data (i.e. quantitative data) to be combined with broad scale data (e.g. qualitative data). The classification scheme was adapted from a national intertidal and subtidal benthic habitat classification scheme (Mount et al., 2007) and was developed in consultation with NRETAS. The decision rules and habitat and substrate classification definitions are provided in Appendix 1 and Appendix 2.

 Figure 8 Schematic of the habitat data collation and the benthic habitat map production process

• Figure 9 The data collation process used to produce the sediment particle size map.

Figure 10 Habitat classification scheme hierarchical flow chart

3.2. Point data classification

The point data contains data from the fields listed in Table 2. When the data was not available the field cells were left blank. The total rows of point data contributed by each survey are listed in Table 2. The data points collected from each survey is displayed in Figure 11.

Table 2 Data fields contained in the habitat point data

Field name	Description
Contractor	Contractor
Project	Project
Site_ID	Transect or site name
Lat	Latitude
Long	Longitude
Substrate	Reef and/or sediment
Reef Cover	% composition of reef and sediment substrate
Reef Structure	Reef particle size
Reef Profile	Reef profile
Sediment Structure	Sediment particle size
Sediment Profile	Sediment profile
Community	Community type
Total biota cover	% cover of total biota
CA_Spp	Canopy algae biota present
SA_Spp	Small algae biota present
MA_Cover	Macroalgae % cover
MA_total	Macroalgae % cover of total biota cover
SG_Spp	Seagrass biota present
SG_Cover	Seagrass % cover
SG_Total	Seagrass % cover of total biota cover
HC_Spp	Hard coral biota present
HC_Cover	Hard coral % cover
HC_total	Hard coral % cover of total biota cover
SC_Spp	Soft coral biota present
SC_cover	Soft coral % cover
SC_total	Soft coral % cover of total biota cover
FF_Spp	Filter-feeders biota present
FF_cover	Filter-feeders % cover
FF_total	Filter-feeders % cover of total biota cover
Other_biota	Other biota attributes
Video_Com	Video comments
Depth	Depth (meters) (raw data)
Date	Date of data capture
Time	Time of data capture (UTM)
Video_Qual	Video quality
Interpreter	Video analyst

 Table 3 The number of rows of data from the different studies that was combined into the known-point data set

			Rows of data			
Data Source	Survey	Methods	Sediment	Community		
NRETAS	Casuarina Beach survey	Qualitative intertidal seagrass survey		1408		
NRETAS	Fanny Bay Survey	Qualitative intertidal seagrass survey		725		
URS	Intertidal Aerial Survey	Qualitative analysis of video and still images captured at spring low tide		34		
URS	Coral Sites	Qualitative description of substrate and community		3		
URS	Dive Locations Completing ROV	Qualitative description of substrate and community	21	24		
URS	First Diving Survey Locations	Qualitative description of substrate and community	15	15		
URS	ROV Sampling Record	Qualitative description of substrate and community	74	74		
URS	Walker Shoal Dive Survey Nov2010	Qualitative description of substrate and community	6	5		
Geo Oceans	Towed Video Survey	Qualitative analysis of towed video footage	36000	36106		
Smit, 2000	Beagle Gulf Sediment Survey	Quantitative sediment survey using PSD analysis	158			
Dames and More, 1982	Channel Island survey	Quantitative sediment survey using PSD analysis	6			
Parry and Munksgaard, 1997	Grainsize of Sediment in Darwin Harbour survey (1993)	Quantitative sediment survey using PSD analysis	114			
URS	Wickham Point, Frances Bay and Stokes Hill Wharf	Quantitative sediment survey using PSD analysis	29			
Total rows of data	1		36423	38394		

 Figure 11 The sources of the point data combined into the total known dataset (~38,000 points)

3.2.1. Sediment particle size point data classification

To combine the sediment data from the different surveys a consistent substrate classification scheme was adapted with particle size definitions based on the Wentworth scale (Wentworth, 1922), a geological scale used to define sediment particle size classes. The substrate classification scheme is a hierarchical classification scheme that clumps fine scale sediment class data into broader classes (Figure 8). This allows data collected at different resolutions to be combined to produce to maps of different scales. The sediment particle size distribution map produced for this report used data collected at the level 2 sediment classification classes. The level 2 sediment classification classes, point values and interpolation cell values are listed in Table 4 and Appendix 2.

To combine the sediment point datasets a hierarchical classification scheme was adapted that clumped fine-scale quantitative particle size data into four broad classes (i.e. mud, sand, gravel and rock). Quantitative data was only used if full-grain size analyses were conducted. The full-grain size analyses sediment data were classified to sediment classification level 3 based on grain size analysis. The level 3 classifications have been merged into a higher sediment classification level 2 (i.e. mud, sand, gravel and rock) that can be distinguished from video or in situ descriptions using the groups listed in the sediment classification triangle (Figure 12) and Figure 8. Mixed and unsorted sands indicate that there were more or less equal parts of fine- medium and coarse sands in the sediment sample and were classed as sand. The level 2 data from all surveys were combined to produce a total data set of 35,423 rows of data throughout the survey area (

Table 3).

Table 4 Decision rules for the sediment particle size level 2 classes

Sodimont alass	Partiala diamatar	Interpolation values				
Seuiment class	Farticle ulameter	Point values	Cell values			
Mud	< 0.6mm	0	0 to 0.5			
Sand	0.6mm to 2mm	1	0.5 to 2			
Gravel	2mm to 64mm	3	2 to 4			
Rock	>64mm	5	>4			

Figure 12 Reclassification classes of the sediment classification triangle (Folk, 1954)

3.3. Benthic communities point data classification

The total community point data consisted of 38,394 rows of data from 9 different surveys (Table 2). The URS diver and ROV surveys and the Geo Oceans towed video survey data was used to classify the subtidal habitats. The NRETAS seagrass survey and URS aerial survey data was used to classify and map the intertidal habitats. Figure 13 shows the total community point data.

A total of 36, 207 rows of subtidal point data consisted of the Geo Oceans towed video survey data (36,106 rows) and the URS diver and ROV survey data (121 rows). The towed video survey used qualitative community class cover estimates from the towed video footage along transect lines, using a sampling design that sampled all of the benthic habitats in the survey area described in detail in Section 2.1.

A total of 2167 rows of intertidal point data consisted of the NRETAS seagrass survey data at Casuarina Beach (1408 rows) and Fanny Bay (725 rows) and the URS aerial survey (34 rows). The NRETAS seagrass survey collected qualitative seagrass species percent cover estimates on a walking survey at spring low-tide. The URS aerial survey captured geo-referenced still images and video footage from a helicopter at spring low tide. The images were analysed using qualitative community class percent cover estimates consistent with the INPEX habitat classification scheme (Appendix 1).

The community point data was classified into a single community type using the percent cover attributes of the different biota classes. The community types were defined by the dominant and co-dominant community types using similar decision rules in Table 5. Table 5 is a modified version of the "nomenclature and decision rules for benthic community types" provided by NRETAS. The decision rules are based on the percent cover composition of the biota classes of the total biota cover.

Community types classification	Example	Biota class composition
Dominated by biota class	Hard coral	Biota class is >90% composition of total biota
Dominant biota class <i>with</i> other biota classes present	Hard coral <i>with</i> macroalgae	Dominant biota class <90% with other biota 10 to 30% composition of total biota
Co-dominant biota classes (and)	Hard coral and macroalgae	Co-dominant biota classes >30% composition of total biota

Table 5 Point data community types classification decision rules and nomenclature.

Figure 13 Community type point data

3.4. Habitat and sediment particle size distribution maps

The classified subtidal sediment and community point data was interpolated using geographic information system (GIS) software to produce broad scale distribution maps

throughout the study area. The total point datasets were interpolated using spline interpolation (spline with barriers) in ArcGIS 9.3. Spline interpolation uses a mathematical function to create a continuous surface of cell values between the values at the known point sample locations. The interpolation boundaries were digitised using the Australian coastline GIS vector (Geoscience Australia, 2004) as the inner boundary and the outer points as the seaward boundary.

Each point sample location had a value assigned to the habitat attributes. The attribute values that were used for the interpolation were calculated from the dataset using the percent cover and the sediment particle size ranges for the biota and sediment particle size interpolations respectively. The interpolation values for the biota cover classes and sediment particle size classes are listed in Appendix 1 and Appendix 2.

The spline interpolation produces a raster surface of cell values within the interpolation boundary. The raster values were reclassified into integer (whole number) classes to prepare the raster data for conversion into a polygon feature. The reclassification process converts a range of cell values into a single value according to the interpolation values decision rules for cover classes and cover values (e.g. biota cover cell values between 60% to 80% cover were reclassified with a value of 70). The reclassified raster layers were converted into polygons shapefiles for processing as described in Section 3.5 and Section 3.6.

3.5. Sediment particle size map

The interpolated sediment particle size distribution map was classified into the level 2 sediment particle size classes in the INPEX habitat classification scheme (i.e. mud, sand, gravel and rock) (Figure 10). The distribution of the different sediment particle sizes was mapped by assigning the point interpolation values for the sediment particle size class listed in Table 4. The interpolation is used to produce a continuous surface of the particle sizes across the survey area with values ranging from 0 to 5. The cutoff thresholds to distinguish between predicted sediment size classes was set as the mid value between the class values, with cell values between the values classified as the sediment class. (e.g. sediment point value = 1; cell value range from 0.5 to 1.5 = mud) (Table 4).

The interpolated sediment particle size distribution map was combined with geophysical acoustic survey data (Fugro, 2008) to produce a sediment particle size map. The acoustic survey classified reef and sediment substrate with high spatial accuracy in targeted areas in Darwin Harbour. The areas identified as rock in the acoustic survey were combined with the interpolated sediment particle size map to produce a broad scale sediment particle size map (Figure 14).

• Figure 14: Sediment particle size map

3.6. Habitat distribution map

3.6.1. Interpolated subtidal habitat distribution map

Percent cover maps were produced for all of the biota classes listed in Appendix 1 (i.e. Hard Coral, Macroalgae, Filter-feeders, Soft Coral and Seagrass) using the spline interpolation methods described in Section 3.4. The same methods were used to produce a reef substrate distribution map using the substrate percent cover values listed in Appendix 2. The percent cover raster values were reclassified to display a biota class presence / absence (distribution) map for each of the biota classes and the reef substrate map. The percent cover threshold decision rules for attribute presence were as follows:

- >10% for hard coral, filter-feeders and macroalgae;
- >1% for seagrass; and
- >25% for reef substrate.

The biota and substrate distribution maps were combined into a single habitat map using the Arc GIS Spatial Analysis 'raster calculator' function. The combined habitat raster map was converted into a polygon feature and classified into the habitat classes listed below:

- Hard Coral; Reef
- Macroalgae; Reef
- Filter-feeder; Reef
- Mixed Community; Reef
- < 10% Macrobiota; Reef
- Soft bottom benthos; Sediment
- Seagrass; Sediment
- Mangrove; Sediment

The reef substrates with a mix of biological communities present (i.e. coral, macroalgae and filter-feeder community assemblages >10% cover) in 0 to -5 meters LAT were classed as mixed communities. The proportion of each biological community in the mixed communities class was calculated using the percent composition of the community groups in the high confidence area on all reef substrates, within the depth range of 0 to -5 meters LAT. The calculation defined the ratio of biological communities on mixed reef as:

Mixed reef = <10% macrobiota 47% : hard coral 15% : macroalgae 8% : filter-feeder 29%.

3.6.2. Geophysical survey data classification

The geophysical surveys used data collected by acoustic echo-sounder equipment to model the seabed features and sediment distribution with high spatial precision, along a proposed gas export pipeline route to Wickham Point and shipping channel and turning basin inside East Arm of Darwin Harbour (Fugro, 2008). The survey accurately modelled the distribution of reef and sediment substrate but not the distribution of biological communities. Therefore, to classify the substrate types it was assumed that all reef substrate mapped in the geophysical survey was capable of supporting biological communities but the mobile soft sediments did not support macro-biota. The biological communities were classified based on depth classes using similar decisions as used for classifying the inferred habitats (described in detail in section 3.6.4). The substrates identified in the geophysical survey were classified using the following habitat classes:

- Reef substrate in water depth between 0-5 LAT = Mixed community; Reef
- Reef substrate in water depth greater than 5m LAT = Filter-feeder; Reef
- Sediment substrate = Soft bottom benthos; Sediment

3.6.3. Collating habitat distribution data – high confidence areas

The decision process for combining the different habitat distribution data is displayed in Figure 15. The process involved prioritising data collected using the data that best represent the distributions of the different habitats while using conservative decisions to include all credible data of important habitats (e.g. hard coral and seagrass distribution data).

The interpolated sub-tidal habitat maps were combined with the intertidal habitat distribution map. The intertidal habitat maps accurately display the distribution of reef and sediment substrates in the intertidal zone but the distribution of seagrass was too difficult to discern from the aerial images. Therefore, the intertidal habitat map superseded all subtidal habitat data except the distribution of seagrass (i.e. the intertidal map was overlaid on top of the subtidal map for all habitats except the seagrass habitats). The combined intertidal and interpolated subtidal map superseded all of the existing habitat map except the habitats previously mapped as hard coral habitat and the geophysical survey maps. This produced a combined subtidal and intertidal habitat map. The combined subtidal and intertidal habitat map was combined with the existing mangrove habitat map to produce a habitat map within the surveyed ('high confidence') areas. The high confidence areas are the areas that were surveyed with adequate data to produce a high confidence areas habitat map.

Figure 15 Decision process to combine the habitat distribution data

3.6.4. Inferred habitat areas

The proportion of benthic habitats in the survey area between Fannie Bay to Lee Point (high confidence area) were used to represent the remaining areas outside of the high confidence area, to produce 'inferred habitat' areas. The percent cover of the benthic habitats in the inferred habitat areas was classified using the percent cover of the biological communities and substrate types (benthic habitats) within the high confidence area for different water depth classes (Table 6). The relationship between water depth and the type of benthic habitats present was determined by counting the occurrence of the biological communities present on reef and sediment substrates within defined depth classes, using the known point data in the high confidence area (Table 7). The biological communities changed composition from a mix of photosynthetic and heterotrophic communities to a heterotrophic dominant habitat at a water depth of approximately -5 meters LAT. The photosynthetic macroalgae and coral communities and heterotrophic filter-feeder communities were all present in the intertidal and shallow sub-tidal zones from +2 to -5 meters LAT of water depth. However, only heterotrophic filter-feeder communities were present on reef substrates in water depth deeper than -5 meters (LAT). Seagrass was recorded on mud and sand sediments in the intertidal and shallow subtidal zones from +2 to -5 meters LAT. Macroalgae, coral and filter-feeders were only found to be present attached to reef substrate.

Inferred Habitat	Depth class	Habitat class	% of area	Benthic habitat ratio
Seagrass:Sediment	Intertidal	Seagrass; Sediment	22%	Seagrass : Sediment 22%:88%
Seagrass:Mixed Reef:Sediment	0 to -5m LAT	Seagrass; Sediment	18%	Seagrass : Mixed Reef : Sediment 18%:5%:77%
		Habitat class% of aSeagrass; Sediment22%Seagrass; Sediment18%Mixed community; Reef5%Mixed community; Reef5%No macrobiota (<10% cover); Reef4%Hard coral; Reef1%Filter-feeders; Reef2%Macroalgae; Reef1%Filter-feeders; Reef2%Seagrass; Reef1%	5%	
Mixed Reef : Sediment	0 to -5m	Mixed community; Reef	5%	Mixed Reef : Sediment
		No macrobiota (<10% cover); Reef	4%	1370.0170
		Hard coral; Reef	1%	
		Filter-feeders; Reef	2%	
		Macroalgae; Reef	1%	
Filter-feeders:Sediment	>-5m LAT	Filter-feeders; Reef	29%	Filter-feeders : Sediment 29%:71%

Table 6: The 'inferred habitats' percent cover calculations and classification

Depth range	Intert	idal	0 to ·	2m	-2 t	o -5	-5 to	-10m	-10 to	-15m	-15 to	-20m	-20 t	o -30
Habitat Classes	Count	%*	Count	%*	Count	%*	Count	%*	Count	%*	Count	%*	Count	%*
Biota classes														
Seagrass	2735	14%	1335	17%	257	6%	0	0%	0	0%	0	0%	0	0%
Macroalgae	2834	57%	509	38%	128	12%	0	0%	0	0%	0	0%	0	0%
Hard coral	2597	52%	580	43%	74	7%	0	0%	2	1%	0	0%	0	0%
Filter-feeders	2651	53%	1193	88%	1086	100%	288	100%	196	87%	4	100%	8	100%
Substrate classes														
Reef	4972	21%	1349	15%	1086	21%	288	11%	226	37%	4	24%	8	42%
Sand	19051	79%	7629	85%	4113	79%	2318	89%	379	63%	13	76%	11	58%

Table 7 Biological communities present in each depth class (using the point data).

* % column is the percent of the biological class present on available substrate

Benthic sampling in the high confidence areas showed that the seagrass communities were only present on the sand substrates in the shallow bays from Fanny Bay to the south west side of Shoal Bay and were not found in Darwin Harbor or Adam Bay. The oceanographic conditions in those areas where seagrass was present in the high confidence areas is similar to the coastal waters between Mandorah and Charles Point. Therefore, the inferred habitat areas likely to contain seagrass communities were mapped as the sand substrates in the intertidal and subtidal zones from +2m to -5 meters LAT between Mandorah and Charles Point.

The inferred habitat area in Shoal Bay was classified as 'soft bottom benthos; sediment' with no macro-biota or reef communities present. This inferred habitat was classified using the known point data in the adjacent high confidence area and the geophysical survey data in the dredge spoil. The inferred habitat boundary (area) was digitised using the areas of Shoal Bay where the Seafarer bathymetry charts showed consistent bathymetry contours indicating a flat, featureless seafloor consisting of sediment with no reef present.

The spatial coverage of the habitats in the inferred habitat areas was defined by extrapolating the inferred habitats throughout the areas outside of the high confidence areas, using the depth data from the Australian Hydrographic Survey admiralty charts.

3.6.5. Benthic habitat map

The inferred habitat and high confidence habitat maps were combined to produce a benthic habitat map showing the distribution of the benthic communities and substrates throughout the mapped areas (Figure 16). The benthic habitat map predicts the spatial area and distribution of the benthic communities and substrates throughout the management area to allow calculations for impact assessment. The area of each habitat class in the study area used for impact assessment is displayed Table 8.

Table 8 Benthic habitat area calculations in the study area (Figure 16)

	Habitat type	Area (Ha)	Hard coral	Filter- feeder	Macro- algae	Sea- grass	Sand	Mud	Gravel	Sedi- ment	Mang- roves
High confidence	Filter-feeders; reef	1258		1258							
habitats	Hard coral; reef	219	219								
	Macroalgae; reef	134			134						
	Mangrove; sediment	21456									21456
	Mixed community; reef	433	65	126	35						
	No macrobiota (<10%); reef	1749									
	Soft-bottom benthos; Sediment	16377								16377	
	Seagrass; sediment	1734				1734					
Inferred habitats	Filter-feeders (29%); sediment (71%)	21516		6240						15276	
	Mixed reef* (13%); sediment (87%)	6640	129	250	69					5777	
Sediment	Gravel	11193							11193		
data	Mud	5728						5728			
	Rock	2900									
	Sand	35409					35409				
Total inferred	area (ha)		146	6528	78	786				24681	
Total high-co	onfidence area (ha)		284	1384	169	1734	35409	5728	11193	16377	21456
Total study ar	ea (ha)	76042	430	7912	247	2520	35409	5728	11193	41058	21456

* Mixed Community; Reef = NM 47%:HC 15%: FF 29%: MA 8%

Figure 16 Benthic habitat map

4. Description of benthic habitats

The benthic habitats, seabed features and sediment distribution within the surveyed areas are highly influenced by the strong tidal currents that flow through Darwin Harbour, particularly in the inner harbor areas. The prevalence of strong tidal currents flowing over the uneven bedrock surface appears to have had a major contributing influence on the form and composition of the reef substrates and the sediments deposited over that surface. The seabed topography within the inner areas of Darwin Harbor varies from smooth and gently undulating with slope gradients of <0.5° to locally very uneven over outcropping ridge features, on the sides of channels and over sandwaves and sandbanks, with measured slope gradients in excess of 1:2 (Fugro, 2008).

The majority of the benthic habitats in the East Arm extension of Darwin Harbor consists of soft bottom benthos communities living in unconsolidated sediments. The surficial sediments and thicker sediment deposits comprise of fluvial muds (i.e. clays, and silts) sands and gravels, with the finer fractions becoming more dominant in the intertidal zones and in areas of more sheltered waters. The actual composition of these sediments is expected to vary considerably throughout the surveyed areas both laterally and vertically due to the active depositional environment. The presence of sandbanks, sandwaves and megaripples indicate a significant degree of sediment mobility. No seagrass or other macrobiota was recorded growing in the sediments in East Arm.

The reef substrates in the inner harbor (including East Arm) consists of outcropping bedrock (reef) surface that varies from relatively smooth to uneven due to the presence of slopes and ridge features. Many of the ridges are inferred to indicate the presence of steeply dipping beds of harder sandstone/quartzite that are more resistant to weathering and erosion (Fugro, 2008). The exposed reef substrates are dominated by filter feeding communities composed of gorgonian fans and sea whips (family Gorgonia), soft corals (family Alcyonica) and sponges which thrive on the food provided by the strong currents and highly turbid waters. Small communities of hard corals are found in the shallow subtidal and intertidal reefs adjacent to the East Arm wharf mixed with the filter-feeder communities. The hard corals communities consist of the growth forms (morphology) of massive (i.e. family Favidae), foliose (i.e. genera Turbinaria) and encrusting (e.g. family Favidae) corals.

The inshore waters between Fannie Bay and Shoal Bay consists of rocky points that extend into intertidal and subtidal reef platforms, interspersed by bays of soft sediments.

The soft sediments in the sheltered bays of Fannie Bay and Casuarina Beach support seagrass communities that are dominated by *Halodule* spp. (e.g. *Halodule uninervis*) with *Halophila* spp (i.e. *H. decipiens*, *H. spinulosa* and *H, ovalis*) and *Syringodium* sp. The majority of the seagrass was found in the lower littoral intertidal zone between 0 to +1 LAT but sparse communities extended out to -3m LAT into the sub-tidal zone.

The reef communities between Fannie Bay and Shoal Bay had a similar community structure that changed with increasing water depth from a mixed community of macroalgae (e.g. *Caulerpa* spp., *Halimeda* spp, and *Sargassum* spp.), hard coral (e.g. *Favidae* spp. and *Turbinaria* sp.) and filter-feeders in the lower-littoral intertidal zone and shallow sub-tidal to a filter-feeder dominant habitat at approximately -3m LAT. Old Man Rock supports a dense community of branching *Acropora* sp. on the northern aspect but on the southern aspect is dominated by the mixed communities of macroalgae, coral and filter-feeders that are typical of the shallow reefs in the region. The mid-littoral to the upper-littoral intertidal reef substrates from Fannie Bay to Lee Point did not support any significant macro-biota communities (macrobiota < 10% cover).

5. Limitations of the mapping methods

Using the methods discussed in this report to collate all of the data collected from different survey methodologies has improved the detail in the existing habitat maps. The maps can continually be updated with additional data using a habitat classification scheme that is consistent with the decision rules and definitions used in this report. However, mapping marine habitats is a difficult task compared with mapping terrestrial habitats, particularly in areas of high turbidity such as in Darwin Harbour. There are limitations to the accuracy of the classification and spatial precision (scale) of the maps described in this report.

The habitat and sediment maps were produced using different data collection and processing methodologies. The accuracy and scale of the maps depends on the accuracy and intensity of the sampling (e.g. number of data points). These maps used various data sources collected using methodologies with different levels of accuracy (i.e. qualitative surveys are less accurate than quantitative surveys; recently collected data is more accurate than older data). The intensity of sampling also varied throughout the survey area resulting in areas of different scales in the map (e.g. Darwin Harbour is surveyed more intensely than the outer extent of the Beagle Gulf). Therefore, it is not possible to quantify the accuracy or scale of the maps. The known data sources and survey methods used to collect and classify the data should be considered when using these maps.

5.1. Sediment particle size map

The primary aim of the sediment particle size map was to predict the distribution of sediments within the study area using all the available data - the map is intended as a broad scale representation of the patterns in sediment particle sizes distribution. The spatial extent of these surfaces is difficult to determine due to the lack of accurate data, the gradual transition between muddy, sandy and coarser sediments and sediment movement associated with large tidal influences.

Outside the greater Darwin region the only source of data was the quantitative Beagle Gulf sediment particle size data (Smit et al, 2000) that was highly accurate using particle size analysis methods but due to the low number of sampling locations (i.e. one sample every 2km) the data is at a very broad scale. In particular, Bynoe Harbour is classified as rock because the one data point sampled in that region was rock and this data was interpolated throughout the Harbour. However, sediment is also present in this area. Darwin Harbour was surveyed more intensely and this mapped the sediment particle size at a finer scale. However, the accuracy of the data may be reduced because the majority of the data was collected using qualitative estimates of sediment particle size (i.e. diver and towed video methods) and the sediment size distribution analysis data (quantitative analysis) collected during the Parry and Munksgaard (1997) survey was collected 15 years ago.

5.2. Benthic habitat map

The spatial distribution and habitat boundaries of the subtidal benthic habitats were defined using interpolation of available point data. The scale of the maps using this method is dependant on the number of data points collected and varies throughout the study area. To produce more accurate habitat boundaries of subtidal habitats, aerial and satellite images or detailed bathymetry collected by geotechnical methods (e.g. laser airborne depth sounder (LADS); acoustic) can be modelled using the known point data

to classify the habitats. However, Darwin Harbour has extremely turbid water, which may limit the effectiveness of images and LADS data collection.

5.2.1. Inferred habitats

The inferred habitat areas were created to predict the polygons of benthic habitat areas where there was not enough data to map these marine habitats with high confidence. The inferred habitat area calculations are modelled on the high confidence data assuming that the ratio of biological communities in the high confidence areas are the same as the ratio throughout the inferred habitat area. The inferred habitat areas can be updated with known habitat data when the data becomes available.

5.2.2. Mixed community class

The mixed community class was used to classify the substrates that were mapped as hard (reef) substrate in the geotechnical (acoustic) survey but did not have known point data to classify the habitats into biological community classes and for the mixed community class in the inferred habitat area. The mixed community class was calculated from the high confidence area between Fanny Bay and Lee Point and assumes that the ratio of biological communities on reef substrate in water depth between 0 to -5m LAT in this area is the same as the mapped areas with these substrate and depth attributes, outside the high confidence area.

6. References

- 1. Parry D.L and Munksgaard N. 1997. Heavy metals and grainsize analyses of surface sediments collected July 1993 from Darwin harbour, NT, Australia. Report to NTG.
- 2. Dames and More 1982. Report Geotechnical investigations proposed coal fired power station, Channel island, Darwin harbour, NT: Vol 3
- 3. Folk, R.L. 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. Journal of Geology 62 (4), 344-359
- 4. Fugro 2008 Report on the Ichthys Field Development Darwin Habour Geophysical Site Survey 2008, V1a Results, Fugro report number P0804
- 5. Geoscience Australia 2004 GEODATA COAST 100K 2004, vector spatial data, National Mapping Division, Geoscience Australia
- 6. Mount, R., Bircher, P. and Newton, J. 2007. *National Intertidal/Subtidal Benthic Habitat Classification Scheme*. School of Geography and Environmental Studies, University of Tasmania
- 7. Smit, N., Billyard, R. and Ferns, L. 2000. Beagle Gulf Benthic Survey. Characterisation of soft substrates. Techincal Report 66. Parks and Wildlife Commission of the Northern Territory

Appendix 1 Habitat Classification Definitions

Biota Classes	Morphological groups	Definitions and examples
Encrusting / turfing		
algae	Microphytobenthos (MPB)	Thin film layer
Only recorded for	Crustose coralline algae (CCA)	Encrusting algae
presence/absence	Turfing algae	Hair-like algae <20mm
	Filamentous algae	Hair-like algae >20mm
Seagrass		Separated into genus or species e.g. Halophila,
Assemblages >1%		Halodule, Posidonia, Zostera, Amphibolis
over 10m ^{2⁻}		
Macroalgae	Red, brown, green	
Assemblages >10%	Small Algae	Macroalgae 20mm to 20cm
over 10m ²	Membrane, thin sheets	Padina spp., Lobophora spp.
	Foliaceous, bushy	Caulerpa spp.
	Lobed, flattened and rounded	Halimeda spp.
	Fleshy or ball-like	Codium spp.
	Canopy Algae	Macroalgae >20cm
	Flat	Ecklonia radiata
	Branching	Cystophora spp., Sargassum spp., other fucoids
Hard Coral	Branching	At least 20 branching (e.g. Seriatopora hystrix)
Assemblages >10%	Digitate	Less than 20 branching (e.g. Acropora digitifera)
over 10m ^{2⁻}	Tabular	Horizontal flattened plates (e.g. Acropora hyacinthus)
	Encrusting	Major portion attached to substrate as a laminar plate
		(e.g. Porites vaughani)
	Foliose	Coral attached at one or more points, leaf-like
		appearance e.g. Turbinaria spp.)
	Massive	Solid boulder or mound (e.g. Favites spp.)
	Submassive	Tends to small columns, knobs or wedges
Soft Coral (BPP)	Sarco/lobo phyton sp.	Photosynthetic soft corals (e.g. Alcyoniidae spp.
Assemblages >10%	Sinularia sp	(BPP))
over 10m ²		
Filter-feeders (non-		Ahermatypic animals (not defined as BPP)
BPP)	Soft Coral (non-BPP)	Non-photosynthetic soft corals (e.g. Gorgonian fans,
Assemblages >10%		Alcyoniidae (non-BPP) Dendronepthia spp.)
over 10m ²	Sponges	Can note morphological groups
	Ascidians	Stalked, encrusting, solitary
	Hydroids	
	Sea whips	
	Gorgonian fans	
	Sea pens	
	Bryozoan	Foliose, stalked
	Anemones	Tube, solitary
	Polychaetes	
Biota Cover Classes	Interpolation values	Decision rules
> 80%	90	no substrate visible.
60-80%	70	some substrate is visible.
40-60%	50	substrate is clearly visible but biota dominates the
		image frame.
20-40%	30	substrate dominates most of the image frame.
10-20%	15	substrate dominates most of the image frame.
5-10%	7.5	substrate dominates most of the image frame.
1-5%	3	trace densities
0-1%	0	No significant macro-biota

Appendix 2 Substrate class definitions

Substrate type	Particle sizes are defined using the	geological 'Wentworth Scale'	
Consolidated (reef)	Substrate predominantly made up of particles of cobble size (>64mm diameter) or larger.		
Unconsolidated			
(sediment)	Substrate predominantly made up of particles of pebble size (<64mm diameter) or smaller.		
Substrate			
composition		Substrate cover class interpolation values	
All sediment	Sediment 100%	0	
Mixed sediment and	Reef 1-24% (i.e. sand 76-99%)	12.5	
reef	Reef 25-49%	37.5	
1	Reef 50%	50	
	Reef 51-74%,	62.5	
	Reef 75-99%	87.5	
All reef	Reef 100%	100	
Reef			
Reef Particle Size		Substrate particle size class interpolation values	
Cobble	Particles 64-256 mm	5	
Boulder	Particles >256 mm	5	
Rock (unbroken)	Unbroken rock substrate	5	
Reef Profile		•	
High	>4m rise over 2m		
Medium	1-4m rise over 2m		
Low	<1m rise over 2m		
Sediment			
Sediment Particle			
Size		Substrate particle size class interpolation values	
Pebble	Particles 4-64mm	3	
Gravel	Particles 2-4mm	3	
Sand	Particles 63um-2mm	1	
Mud	Particles <63um	0	
Sediment Profile			
Flat	No profile (undulations <1cm)		
Small ripples	Undulations 1-10cm high		
Medium ripples	Undulations 10-50cm high		
Large ripples	Undulations 50-100cm high		
Waves	Undulations 1-5m high		
Dunes	Undulations >5m high		
Bioturbation			
None	No evidence of bioturbation		
Low	1-2 disturbances (e.g. burrows or mounds) per metre		
Medium	3-10 disturbances per metre		
High	>10 disturbances per metre		